Theoretical Perspectives

S. Y. Choi (Chonbuk)

Questions & Comments

The 20th LHC monthly meeting, December 16, 2016

Our Core Theory: Standard Model

A consistent relativistic & quantum field theory with the 126 GeV Higgs discovery in 2012!

Electromagnetic [+] Weak + Strong

Local Gauge Symmetries
Spontaneous EWSB
Weakly-coupled
Unitary
Renormalizable

[Wikipedia]

Glory ⇔ **Disaster** ?

[T. Han, 2016] 600 500 400 Triviality EW 300 Precision 200 126 100 EW vacuum is absolute minimum 17 19 $\log_{10} \Lambda \, [\text{GeV}]$

"Perfectly" works up to Terascale

Valid, perhaps, up to the Planck scale

Grand Evolution of Universe

[T. Han, 2016]

Quantum Gravity, Unification, Inflation, DM, DE, Matter Asymmetry, ...

Questions

[Snowmass NP report, 2013]

Unification: Quantum Numbers

Tidy

Proton Decay + Majorana Neutrinos + ???

Unification: Force and Substance

[D.I. Kazakov]

??? ⇔ SUSY

Flavor Puzzle: Mass and Mixing

Extremely large hierarchy

No concrete hints for flavor mixing patterns

New CP-violation sources?

. . .

What symmetries and which scale?

Comments

No guaranteed NP scales unlike the EW scale

••

Many scenarios for DM

Various types of portals to hidden sectors

...

Quantum gravity (superstring ⇔ supergravity)

P5 Five Science Drivers

Report of the Particle Physics Project Prioritization Panel, 2014

Use the Higgs boson as a new tool for discovery

Pursue the physics associated with neutrino mass

Identify the new physics of dark matter

Understand cosmic acceleration: dark energy and inflation

Explore the unknown: new particles, interactions and physical principles

COLLISION COURSE

Particle physicists around the world are designing colliders that are much larger in size

than the Large Hadron Collider at CERN, Europe's particle-physics laboratory. LHC Leads the Way (2015-2030)

Hadron Collider Circumference: 27 km

Energy: 14 TeV

CERN's Large

China's electron positron collider

52 km; 240 GeV

China's super proton collider

52 km; ≤70 TeV

US/European sup proton collide 100 km; 100 TeV

e+e-&Z,240-350GeV

CEPC/SppC?

mternational etron-position collider

80 km; 240 GeV

China-hosted international

super proton collider 80 km; ≤100 Te

attonal Linear Collider

Length: 31 km

FCC?

Existing Proposed ≤1 TeV ILC as Higgs Factory & beyond GeV, gigaelectronvolt

Proposed running periods and integrated luminosities at each of the center-of-mass energies Snowmass 1310.8361 for each facility.

Facility	HL-LHC	ILC	ILC(LumiUp)	CLIC	TLEP (4 IPs)	HE-LH	C VLHC
\overline{s} (GeV)	14,000	250/500/1000	250/500/1000	350/1400/3000	240/350	33,00	100,000
$\mathcal{L}dt \; (\mathrm{fb}^{-1})$	3000/expt	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600	3000	3000
$dt \ (10^7 \mathrm{s})$	6	3+3+3	(ILC 3+3+3) + 3+3+3	3.1+4+3.3	5+5	6	6

Strategies for Future Korean Particle Physics Community

Theories? **Experiments?**

자유토론!!

전 방위적 전 스케일 탐구 탐험